Asymptotic and oscillatory behavior of nth order forced functional differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillations of Nth-order Functional Differential Equations

-Some new oscillation criteria for the even order damped functional differential equation (a(t)z(n-1)(t)) ' ÷ p(t)lz(n-1)(Ol#x(n-a)(O ÷ q(t)f(xIaa(t)] . . . . . =Lq.~(t)]) = 0 are established, where ~ _> O. These criteria are an extension of some of the known results. 1. I N T R O D U C T I O N Recently, Grace and Lalli [1] discussed the oscillation of the nth-order functional differential equa...

متن کامل

ASYMPTOTIC AND OSCILLATORY BEHAVIOR OF nTH–ORDER HALF–LINEAR DYNAMIC EQUATIONS

In this paper, we study the n th-order half-linear dynamic equations (x[n−1])Δ (t)+ p(t)φα[1,n−1] (x(g(t))) = 0 on an above-unbounded time scale T , where n 2 , x[i](t) := ri(t)φαi [( x[i−1] )Δ (t) ] , i = 1, . . . ,n−1, with x[0] = x, φβ (u) := |u|β sgnu , and α [i, j] := αi · · ·α j . Criteria are obtained for the asymptotics and oscillation of solutions for both even and odd order cases. Thi...

متن کامل

OSCILLATORY CRITERIA FOR NONLINEAR nTH-ORDER DIFFERENTIAL EQUATIONS WITH QUASIDERIVATIVES

Sufficient conditions are given for the existence of oscillatory proper solutions of a differential equation with quasiderivatives Lny = f(t, L0y, . . . , Ln−1y) under the validity of the sign condition f(t, x1, . . . , xn)x1 ≤ 0, f(t, 0, x2, . . . , xn) = 0 on R+ × Rn.

متن کامل

Oscillation and Asymptotic Behavior of Solutions of Nth Order Nonlinear Delay Differential Equations*

where n >, 2, a: [0, 00) + [0, a~), q: [0, co) --+ (-00, co), andf: (--co, 03) + (-00, CQ). We assume a(l), q(t), andf( x are continuous, q(t) < t for all t > 0, q(t) 3 co ) as t ---f co, and xf(x) > 0 for x # 0. Usually, a condition of monotonicity on f is needed in order to obtain results for Eq. (1) analogous to those of an ordinary differential equation of the same type. Many authors observ...

متن کامل

Oscillatory and Asymptotic Behavior of Fourth order Quasilinear Difference Equations

where ∆ is the forward difference operator defined by ∆xn = xn+1 −xn, α and β are positive constants, {pn} and {qn} are positive real sequences defined for all n ∈ N(n0) = {n0, n0 + 1, ...}, and n0 a nonnegative integer. By a solution of equation (1), we mean a real sequence {xn} that satisfies equation (1) for all n ∈ N(n0). If any four consecutive values of {xn} are given, then a solution {xn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1989

ISSN: 0022-247X

DOI: 10.1016/0022-247x(89)90090-5